]]>
LearnNext
Get a free home demo of LearnNext

Available for CBSE, ICSE and State Board syllabus.
Call our LearnNext Expert on 1800 419 1234 (tollfree)
OR submit details below for a call back

clear

Scalar Product

2,689 Views
Have a doubt? Clear it now.
live_help Have a doubt, Ask our Expert Ask Now
format_list_bulleted Take this Lesson Test Start Test

Scalar Product - Lesson Summary

Vector multiplication is of two types. One is dot or scalar product and the other is cross or vector product.

The name itself indicates the result.

If we use scalar product, the result is a scalar, that is, a real number.

If we use vector product, the result is a vector.

Dot product of vectors  a → and b → :

a → . b → = | a → | | b → | cos ϴ, where 0o ≤ ϴ ≤ 180o

If a → = 0 → or  b → = 0 →

a → . b → = 0

Properties of dot product:
(1) a → . b →   ∈  R 
(2) If a →   . b →   = 0 ⇔   a →  ⊥  b →   
(3) When θ = 0° ,  a →   .  b → = | a → | | b → |
       (i)  a →   .  a →   = | a → |2
(4) When θ = 180°,   a →   .  b → = - | a → | | b → |
(5) If θ is the angle between the vectors   a →   and  b →  
         Cos θ  =  a → . b → | a _ | | b _ |

For unit vectors  i ^   , j ^ and  k ^ :

i ^   . i ^   = | i ^ |2  = 1

j ^   . j ^   = | j ^ |2  = 1


k ^   . k ^   = | k ^ |2  = 1

For mutually perpendicular unit vectors   i ^   , j ^ and  k ^ :

i ^   . j ^   = 0

j ^   . k ^   = 0

k ^   . i ^   = 0

Comments(0)

Feel the LearnNext Experience on App

Download app, watch sample animated video lessons and get a free trial.

Desktop Download Now
Tablet
Mobile
Try LearnNext at home

Get a free home demo. Book an appointment now!

GET DEMO AT HOME