]]>
LearnNext
Get a free home demo of LearnNext

Available for CBSE, ICSE and State Board syllabus.
Call our LearnNext Expert on 1800 419 1234 (tollfree)
OR submit details below for a call back

clear

Properties of Cross Product

3,543 Views
Have a doubt? Clear it now.
live_help Have a doubt, Ask our Expert Ask Now
format_list_bulleted Take this Lesson Test Start Test

Properties of Cross Product - Lesson Summary

Property 1: p →   x  q →   is also a vector.

The cross product of p →   and  q →   is given by:

p →   x q →   = | p →  | | q →  |  sin ϴ n ^

Hence, the cross product of two vectors p and q, and the unit vector, n, are collinear.


Property 2: p →   x  q →   = 0 →   ⇔ p →     ||   q →   .

Let p →   and q →   be two non-zero vectors.

If p →   ∥  q →  , ϴ = 0o

⇒ p →   x q →   = | p →  | | q →  |  sin 0  n ^   =  0 →  

(sin 0o = 0)


Observation 1: p →   x p →   =  0 →  

Since ϴ = 0o


Observation 2: p →   x ( - p →  ) =  0 →  

Since ϴ = 180o


Observation 3:

 i ^ x i ^ =  0 →  

 j ^ x j ^ = 0 →  

 k ^ x k ^ = 0 →  

If p →   Á q →  , ϴ = 90o


Property 3: Given p →   Á q →  ,

p →   x q →   =  | p →  | | q →  |  sin 90 n ^ =  | p →  | | q →  |  n ^  

⇒  p →    x   q →   =  | p →  | | q →  | | n ^ |  = | p →  | | q →  | 

(sin 90o = 1 and n ^ is a unit vector)


Property 4: Angle ϴ between two vectors p →   and q →   is given by:

sin ϴ = | p _ x q _ | | p _ | | q _ |

p →   x q →   = | p →  | | q →  | sin ϴ n ^ ...(1)

 q →   x p →   =  | p →  | | q →  | sin ϴ n ^ , ...(2)

n ^ = - n ^

 q →   x p →   = - | p →  | | q →  | sin ϴ n ^ ...(3)

From (1) and (3):

p →   x q →   = - q →    x p →  


Property 5: The cross product of vectors is not commutative, since p →   x q →   = - q →    x p →  .

For mutually perpendicular vectors i ^ and j ^ :

 i ^ x j ^ = | i ^ | | j ^ | sin 90 n ^

⇒  i ^ x j ^ = n ^ (since  | i ^ | = | j ^ | = sin 90 = 1)

⇒  i ^    x j ^ =  k ^ (since n ^  ⊥ i ^    x j ^ )

Since cross product is not commutative:

 j ^ x i ^ = -  k ^  

Similarly:

 j ^ x  k ^ =  i ^ and k ^ x  j ^ = -  i ^

k ^ x i ^ =  j ^ and i ^ x  k ^ = -  j ^  

Property 6: If p →   and q →   represent the adjacent sides of a triangle, then the area of the triangle = ½ |  p →   x  q →  |.

In ∆OPQ, let QR Á OP.

Area of ∆OPQ = ½ Base x Height

⇒ Area of ∆OPQ = ½ (OP). ( QR) ...(1)

In right-angled ∆OQR:

sin ϴ = QR OQ

⇒ QR = OQ sin ϴ

⇒ Area of ∆OPQ = ½ (OP) (OQ) sin ϴ

OP = | p →  | and OQ = | q →  |

⇒ Area of ∆OPQ = ½ | p →  | | q →  | sin ϴ

Since |  p →   x  q →  | = | p →  | | q →  | sin ϴ

Area of ∆OPQ = ½ | p →   x q →  |

The cross product of p →   and q →   is given by: p →   x q →   = | p →   | | q →  | sin ϴ n ^


Property 7: If p →   and q →   represent adjacent sides of a parallelogram, the area of the parallelogram = | p →   x q →  |.

In parallelogram OPRQ, let QS Á OP.

Area of parallelogram OPRQ = Base x Height

⇒ Area of parallelogram OPRQ = OP .QS ...(1)

In right-angled ∆OQS:

sin ϴ = QS OQ

⇒ QS = OQ sin ϴ

⇒ Area of parallelogram OPRQ = OP . OQ sin ϴ

OP = | p →  | and OQ = | q →  |

⇒ Area of parallelogram OPRQ =  | p →  | | q →  |  sin ϴ

Since | p →   x q →  | = | p →  | | q →  | sin ϴ

Area of parallelogram OPRQ = | p →   x q →  |


Property 7: Distributive property of cross product.

For any three vectors  p →   , q →   and r →    :

p →   x ( q →    + r →  ) =   p →   x   q →   +   p →   x r →  


Property 8: For any two vectors p →   and q →   and a scalar λ :

  λ ( p →   x q →  ) = (λ  p →  ) x  q →   = p →   x (λ q →  )

  a →   =  a1 i ^ + a2  j ^ + a3  k ^    

  b →   =  b1 i ^ + b2  j ^ + b3  k ^   

 a →   x b →   = ( a1 i ^ + a2  j ^ + a3  k ^   ) x (b1 i ^ + b2  j ^ + b3  k ^ )

⇒  a →   x b →   =  a1 i ^   x (b1 i ^ + b2  j ^ + b3  k ^ ) +   a2  j ^   x (b1 i ^ + b2  j ^ + b3  k ^ ) + a3  k ^   x (b1 i ^ + b2  j ^ + b3  k ^ )   

= a1b1 ( i ^   x  i ^ ) + a1b2 ( i ^   x  j ^ ) + a1b3 ( i ^   x  k ^ ) + a2b1 ( j ^   x  i ^ ) + a2b2 ( j ^   x  j ^ ) + a2b3 ( j ^   x  k ^ ) + a3b1 ( k ^   x  i ^ ) + a3b2 ( k ^   x  j ^ ) + a3b3 ( k ^   x  k ^ )

We know:

  i ^   x  i ^   =  j ^   x  j ^    =   k ^   x  k ^    = 0  

i ^ x j ^ = k ^ and j ^ x i ^ = - k ^

j ^ x k ^ = i ^ and k ^ x j ^ = -  i ^

k ^ x i ^ = j ^ and i ^ x k ^ = - j ^  

⇒  a →   x b →   =  a1b2 ( i ^   x  j ^ ) + a1b3 ( i ^   x  k ^ ) + a2b1 ( j ^   x  i ^ )  + a2b3 ( j ^   x  k ^ ) + a3b1 ( k ^   x  i ^ ) + a3b2 ( k ^   x  j ^ )     

=   a1b2  k ^    - a1b3  j ^    - a2b1  k ^     + a2b3  i ^    + a3b1  j ^    - a3b2  i ^            

⇒ a →   x b →   = ( a2b3  - a3b2)  i ^    - (a1b3 -  a3b1) j ^    + (a1b2  - a2b1)  k ^   

The cross product of two vectors can also be expressed as a determinant.

⇒  a →   x b →   =  i ^ j ^ k ^ a 1 a 2 a 3 b 1 b 2 b 3

Comments(0)

Feel the LearnNext Experience on App

Download app, watch sample animated video lessons and get a free trial.

Desktop Download Now
Tablet
Mobile
Try LearnNext at home

Get a free home demo. Book an appointment now!

GET DEMO AT HOME