]]>
LearnNext
Get a free home demo of LearnNext

Available for CBSE, ICSE and State Board syllabus.
Call our LearnNext Expert on 1800 419 1234 (tollfree)
OR submit details below for a call back

clear

Mean Deviation about Mean for Grouped Data

5,488 Views
Have a doubt? Clear it now.
live_help Have a doubt, Ask our Expert Ask Now
format_list_bulleted Take this Lesson Test Start Test

Mean Deviation about Mean for Grouped Data - Lesson Summary

Data can be grouped in two ways - discrete frequency distribution and continuous frequency distribution.
 
A collection of data consisting of distinct values occurring with certain frequencies is called discrete frequency distribution.
 
Example of discrete frequency distribution:
The table displays the data of the performance of 50 students in a math test.
 


Classify the data into different class-intervals along with their respective frequencies.

When data are arranged in different class intervals without any gaps along with their frequencies, it is called continuous frequency distribution.
 
An example of continuous frequency distribution:
 
The table displays the marks scored by 50 students.            Marks Scored           Number of Students               90 - 100                     4               75 - 90                     9               60 - 75                    14               40 - 60                    18                0 - 40                      5  
Mean deviation about the mean for discrete frequency distribution:      Observations         Frequencies               x 1               f 1               x 2               f 2               x 3               f 3               ....               ....               x n               f n  
x _ = ∑ i = 1 n x i f i ∑ i = 1 n f i = 1 N ∑ i = 1 n x i f i

N = Sum of the frequencies (Number of observations)
Deviation from the mean, x _  = x i - x _ , where i = 1, 2, 3, ... , n
Absolute values of the deviations = |  x i - x _ |, where i = 1, 2, 3, ... , n
Mean deviation about the mean = MD ( x _ )

= ∑ i = 1 n f i | x i - x _ | ∑ i = 1 n f i

= 1 N ∑ i = 1 n f i | x i - x _ |

Ex: Consider the weights of 20 students.   Weight in kg (xi)    Number of Students (fi)           48            3           49            4           50            6           51            4           52            3
 
To find the mean deviation of the given data, mean of the data is found.    Weight in kg (xi)     Number of Students (fi)        fixi             48                       3        144             49                       4        196             50                       6        300             51                      4        204             52                      3        156                ∑ i = 1 5 f i = 20   ∑ i = 1 5 f i x i   = 1000
 
Mean ( x _ ) = 1000 20 = 50 kg

Modulus of deviation of each observation from the mean and the sum of the products of the deviations of the observations and the frequency concerned:    Weight in kg (xi)     Number of Students (fi)        fixi   | x i - x _ | = | x i - 50|          f i | x i - x _ |             48                       3        144  |48 - 50| = 2            6             49                       4        196  |49 - 50| = 1            4             50                       6        300  |50 - 50| = 0            0             51                      4        204  |51 - 50| = 1            4             52                      3        156  |52 - 50| = 2            6                ∑ i = 1 5 f i = 20   ∑ i = 1 5 f i x i   = 1000   ∑ i = 1 5 f i | x i   -  x _ |= 20  
MD ( x _ ) = 1 n   ∑ i = 1 n f i | x i   -  x _ | = 20 20  = 1
 
Mean deviation about the mean for Continuous frequency distribution:
           Marks Scored                Number of Students (fi)                       80 - 100                     3               60 - 80                     15               40 - 60                    19               20 - 40                    10                0 - 20                      3  
Mean of the data:
           Marks Scored                Number of Students (fi)           Mid-values (xi)              fixi                  80 - 100                     3         90  270               60 - 80                     15         70 1050               40 - 60                    19         50   950               20 - 40                    10         30   300                0 - 20                      3         10    30                  ∑ f i = 50     ∑ i = 1 5 f i x i   = 2600  
Mean ( x _ ) = ∑ x i f i ∑ f i   =  2600 50   = 52 
 
If the number of observations is large, then the mathematical calculation is tedious.
 
For data with a large number of observations, the assumed mean method or the step-deviation method can be used to find the mean.

Find the modulus of the deviations of the mid-values from the mean and find the product of the deviations with their respective frequencies.
           Marks Scored                Number of Students (fi)           Mid-values (xi)              fixi           | x i - x _ | = | x i - 52|                      f i | x i - x _ |               80 - 100                     3         90  270    |90 - 52| = 38   114               60 - 80                     15         70 1050    |70 - 52| = 18   270               40 - 60                    19         50   950    |50 - 52| = 2   38               20 - 40                    10         30   300    |30 - 52| = 22   220                0 - 20                      3         10    30    |10 - 52| = 42    126                  ∑ f i = 50     ∑ i = 1 5 f i x i   = 2600   ∑ i = 1 5 f i | x i   -  x _ |= 768  
 
 Mean deviation about mean = MD ( x _ ) = 1 n   ∑ i = 1 n f i | x i   -  x _ | = 768 50  = 15.36
 
Therefore, the mean deviation about the mean is equal to 768 divided by 50, which is equal to 15.36.

Comments(0)

Feel the LearnNext Experience on App

Download app, watch sample animated video lessons and get a free trial.

Desktop Download Now
Tablet
Mobile
Try LearnNext at home

Get a free home demo. Book an appointment now!

GET DEMO AT HOME